Résumé : Trigonométrie

Cosinus, Sinus et Tangente

<u>Définition</u>: Soit un triangle rectangle. On appelle:

Cosinus d'un des deux angles aigus le quotient de la longueur du côté adjacent à cet angle par la longueur de l'hypoténuse.

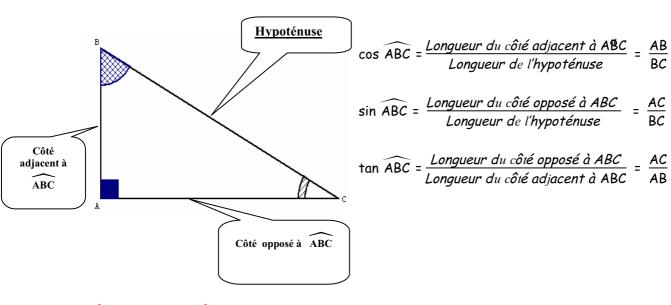
Sinus d'un des deux angles aigus le quotient de la longueur du côté opposé à cet angle par la longueur de l'hypoténuse.

Tangente d'un des deux angles aigus le quotient de la longueur du côté opposé à cet angle par la longueur du côté adjacent.

Notation : Soit \widehat{ABC} un angle aigu

le cosinus de l'angle \widehat{ABC} sera noté \widehat{cosABC} , le sinus de l'angle \widehat{ABC} sera noté \widehat{sinABC} et la tangente de l'angle \widehat{ABC} sera notée \widehat{tanABC}

ABC est un triangle rectangle en A



 $\cos 0^{\circ} = 1 \text{ et } \cos 90^{\circ} = 0$ $\sin 0^{\circ} = 0 \text{ et } \sin 90^{\circ} = 1$

 $\tan 0^{\circ} = 0$ <u>la tangente de 90° n'existe pas</u>.

Propriété : soit un angle x compris entre 0 et 90° on a : $0 \le \cos x \le 1$ et $0 \le \sin x \le 1$

Propriété: Le sinus d'un angle aigu est égal au cosinus de l'angle complémentaire.

Exemple: sin60° = cos30°

Remarque:

la tangente d'un angle aigu peut être supérieure à 1

<u>Propriété</u>:

Soit
$$x$$
 un angle aigu, on a $\tan x =$

$$\tan x = \frac{\sin x}{\cos x}$$

Propriété:

Soit x un angle,
$$0^{\circ} \le x < 90^{\circ}$$
 on a $\cos^2 x + \sin^2 x = 1$ $\cos^2 x = (\cos x)^2$ et $\sin^2 x = (\sin x)^2$

Calculatrice : on vérifie d'abord que le mode de la calculatrice est bien degré (DEG ou D)

- Pour avoir une approximation de la valeur du cosinus, sinus ou tangente d'un angle aigu, on utilise les touches cos, sin ou tan de la calculatrice de l'angle 35°:
- Pour connaître la valeur approximative d'un angle dont on connaît le cosinus,le sinus ou bien la tangente on utilise les touches \cos^{-1} , \sin^{-1} ou bien \tan^{-1}

Distance dans un repère orthonormé du plan :

Un repère du plan est **orthonormé** lorsque ses deux axes sont perpendiculaires et munis de la même unité.

Propriété :

Dans un repère orthonormé (O, I, J) du plan, la distance AB des deux points $A(x_A; y_A)$ et $B(x_B; y_B)$ est :

$$AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$$

