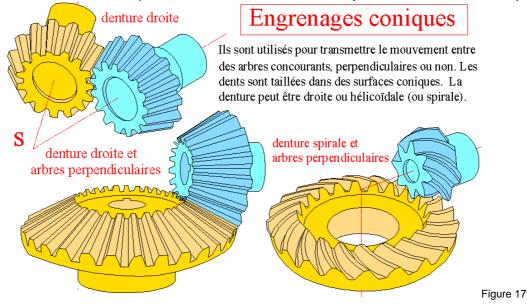

Nom: V. ENGRENAGES CONIQUES (OU CONCOURANTS) PJ


C'est un groupe important utilisé pour transmettre le mouvement entre deux arbres non parallèles dont les axes sont concourants, les axes à 90° sont les plus courants.

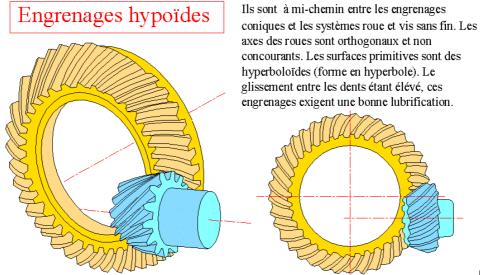
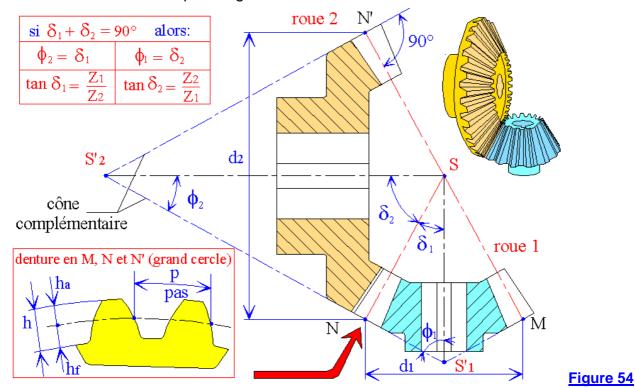
Les surfaces primitives ne sont plus des cylindres mais des cônes (cônes primitifs). Les cônes sont tangents sur une ligne de contact MM' et leur sommet commun est le point S, c'est aussi le point d'intersection des axes de rotation des deux roues.

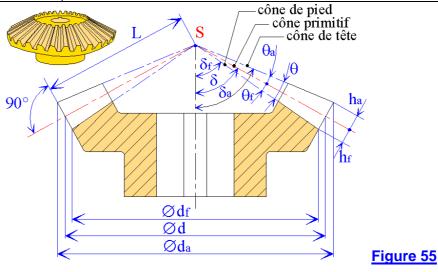
1. Principaux types

Engrenages coniques à denture droite : ce sont les plus simples, la direction des génératrices du profil de la denture passe par le sommet S. Aux vitesses élevées on retrouve les mêmes inconvénients que les engrenages droits à denture droite (bruits de fonctionnement, fortes pressions sur les dents...).

Engrenages coniques à denture droite ou spirale : même démarche que pour les engrenages droits, pour diminuer les bruits aux grandes vitesses, assurer une plus grande progressivité et continuité de la transmission, la denture droite est remplacée par une denture spirale ou hélicoïdale (angle de pression usuel α_n =20° ou 14°30′, angle de spirale β =35°). Figure 17

Engrenages hypoïdes: on peut les considérer comme une variante complexe des précédents avec les mêmes qualités générales. Ils sont à mi-chemin entre les engrenages coniques et les engrenages à roue et vis sans fin. Les axes des roues sont orthogonaux mais non concourants. Les surfaces primitives ne sont plus des cônes mais des hyperboloïdes (en forme d'hyperbole). Le glissement (ou frottement) entre les dents est élevé.


Figure 25

2. Caractéristiques des engrenages coniques à denture droite

La taille et la forme de la dent (module m, pas p, d, d_a, d_f, h, h_a, h_f) sont définies à partir du plus grand cercle ou sur l'extrémité la plus large de la denture.

Principales caractéristiques des engrenages coniques à denture droite Tableau 7		
Caractéristique	Symbole ISO	
vitesse angulaire	ω	en rad.s ⁻¹ ; $\omega = \pi N/30$
nombre de tours	n	n en tours par minute ou tr.min ⁻¹
nombre de dents	Z	Z ₁ (roue1) et Z ₂ (roue 2)
module	m	nombre normalisés : voir tableaux des valeurs des engrenages droits à dentures droites
pas (pas primitif)	р	$p = \pi m$ (remarque $p_1 = p_2 = p$)
angle primitif	δ	δ_1 (roue1), δ_2 (roue 2)
rayon primitif	r	$r_1 = \frac{1}{2} m Z_1 = \frac{1}{2} d_1$; $r_2 = \frac{1}{2} m Z_2 = \frac{1}{2} d_2$
diamètre primitif	d	$d_1 = mZ_1$; $d_2 = mZ_2$
angle de pression	α	valeur usuelle: $\alpha = 20^{\circ}$
angle de tête	δ_{a}	$\delta_a = \delta + \theta_a$
angle de pied	δ_{f}	$\delta_{f} = \delta - \theta_{f}$
angle saillie	θ_{a}	$tan\theta_a = 2m.sin\delta/d$
angle de creux	θ_{f}	$tan\theta_f = 2.5 \text{m.sin} \delta/d$
angle de hauteur	θ	$\theta = \theta_a + \theta_f$
diamètre de tête	d _a	$d_a = d + 2m.cos\delta$
diamètre de pied	d _f	$d_f = d - 2.5 m.cos\delta$
saillie	h _a	$h_a = m$
creux	h _f	h _f = 1,25m
hauteur de dent	h	$h = 2,25m = h_a + h_f$
Longueur génératrice primitive		$L = d_1/2\sin\delta_1 = d_2/2\sin\delta_2$
largeur de dent	b	$L/4 \le b \le L/3$ (raisons de taillage)
δ_1 Erreur! Signet non défini. + δ_2 = 90°	$\delta_1 + \delta_2 < 90$	$\delta_1 + \delta_2 > 90$
$\phi_1 = \delta_2$	$\phi_1 = 90 - \delta_1$	$\phi_1 = 90 - \delta_1$
$\phi_2 = \delta_1$	$\phi_2 = 90 - \delta_2$	$\phi_2 = 90 - \delta_2$

Cône complémentaire : c'est le cône de sommet S' dont les génératrices (S'₂N, S'₂N'...), tracées à partir de l'extrémité la plus large de la denture, sont perpendiculaires à celles du cône primitif.

Remarque : l'étude géométrique d'un engrenage conique (continuité d'engrènement, interférences, glissement...) se ramène à l'étude de l'engrenage droit complémentaire (approximation de Trédgold) de rayons primitifs $r'_2=S'_2N$, $r'_1=S'_1N$ et de nombre de dents $Z'=2\pi r'/p$.

Nom: