NOM :	MATERIAUX	
-------	-----------	--

I. INTRODUCTION

Les métaux non ferreux jouent un rôle essentiel en technologie et leurs diverses propriétés intéressent de nombreux concepteurs.

Bien que plus coûteux, ils se distinguent des aciers par les propriétés suivantes : résistance à la corrosion, facilité de fabrication, conductivité électrique, conductibilité thermique, légèreté, résistance aux températures élevées, couleur. Chacun des métaux non ferreux possède au moins deux de ces propriétés en même temps.

Ils sont souvent caractérisés par une température de fusion basse, ce qui facilite le moulage ; une grande ductilité avec une limite élastique peu élevée, ce qui favorise la déformation à froid et une bonne usinabilité (basses vitesses de coupe...). Seules, la résistance mécanique et la soudabilité sont inférieures à celles des aciers.

Principales familles (avec leurs alliages): aluminium, cuivre, magnésium, zinc, titane, nickel.

La plupart de ces matériaux sont commercialisés sous plusieurs formes ou dans des états métallurgiques différents (brut, recuit, écroui, durci), l'utilisateur choisissant l'état de livraison qui lui convient.

Propriétés comparées des principaux métaux Tableau 1												
Familles	Métaux ferreux				Principaux métaux non ferreux							
Grandeurs à 20℃	Fer	Aciers au carbone	Aciers inox. 18/8	Fontes GS EN-GJS	Alumi- nium	Cuivre	Zinc	Magné- sium	Nickel	Titane		
densité	7,87	7,85	7,9	7,2	2,7	8,96	7,13	1,74	8,8	4,54		
début de fusion ℃	1538	1450	1425	-	660	1083	420	650	1453	1668		
coefficient. de dilatation (K ⁻¹)	12.10 ⁻	12.10 ⁻⁶	17.10 ⁻⁶	12,5. 10 ⁻	23.10 ⁻	17.10 ⁻	40.10 ⁻	27.10 ⁻	13.10 ⁻	10.10 ⁻		
chaleur spécifique J.kg ⁻¹ .K ⁻¹	444	430	513	515	900	385	385	1025	444	523		
conductibilité thermique W.m ⁻¹ .K ⁻¹	80	100	30	35	238	402	117	155	62	22		
résistivité électrique μΩcm	10	11	70	50	2,65	1,73	5,9	4,46	9,2	50		
module élasticité E (Gpa)	190	200	193	170	67	112	84	45	210	110		
module de rigidité G (Gpa)	75	75	75		27	38		17	80	40		
coefficient de. Poisson v	0,27	0,32	0,27	0,27	0,34	0,36		0,35	0,31	0,33		
indice prix (indicatif)	1				6	11	5,5	14	41	55		