TP CI 5 CRIC ELECTRIQUE 3h

Centre d'intérêt : Vérifier les performances d'un mécanisme. Comportement énergétique des systèmes.

Thème abordé: Energétique

Objectif du TP: visualiser la chaîne d'énergie.

Pré-requis: Cinématique graphique et statique du solide.

Matériel nécessaire : système complet, système démonté, 2 appareils de mesure, une règle, un chronomètre et un PC avec SW.

Documents nécessaires : le cours d'énergétique et le dossier

technique.

Problématique : Vérifier le dimensionnement du moteur.

1^{ère} PERIODE : mesures

Le cric est en position basse. Placer la charge sur le cric. Effectuer les branchements électriques afin de mesurer la tension et l'intensité lors du levage.

🖐 Avant de mettre le système en mouvement, appeler votre dévoué professeur !

- Mesurer la tension maximale et l'intensité maximale lors du levage.
- Mesurer la hauteur de levage.
- A l'aide d'un chronomètre, mesurer le temps de déplacement.
 - En fonction des données trouvées, déterminer la puissance mécanique nécessaire pour soulever la charge.
 - Calculer la puissance absorbée par le moteur.
 - En déduire le rendement global du système.
 - Conclure.

2ème PERIODE : essai réel

Des essais ont été réalisés dans des conditions réelles :

- charge soulevée : 550 Kg
- Tension d'alimentation : 13.3 V
- hauteur initiale 110 mm ; Intensité de départ : I_d = 1.3 A
- hauteur de contact avec le véhicule : 200 mm atteinte au bout de 15s ; I₁ = 2 A
- Hauteur de décollage des roues : 300 mm atteinte au bout de 35s ; l₂ = 4.15 A
- Hauteur finale : 350 mm atteinte au bout de 1 min 20 s ; I_f = 2.7 A
 - Déterminer la vitesse moyenne ainsi que la puissance mécanique au niveau de la charge.
 - Tracer sur feuille de copie la courbe de l'intensité en fonction de la position.
 - Déterminer la puissance maximale absorbée par le moteur.
 - Calculer le rendement global du système.
 - Compléter la chaîne de puissance suivante :

- Préciser les différents rendements : moteur : $\eta_{\rm m}$ = 0.9 ; engrenage : $\eta_{\rm e}$ = 0.95

Frottements dans les liaisons : $\eta_f = 0.8$

- Calculer les puissances intermédiaires et en déduire le rendement du système vis / écrou, conclure.
- Le constructeur précise des données maximales, en déduire la puissance utile maximale du moteur. Conclure.

3^{ème} PERIODE : vérifications cinématiques

Répondre sur DR1; Echelle des vitesses 1 cm pour 1 mm/s

- A partir des mesures réalisées lors de l'essai réel, Tracer la vitesse de translation : V_{A15/1} (on prendra la vitesse moyenne)
- Définir le mvt de 15/1, en déduire V_{G15/1} et tracer cette vitesse.
- Comparer V_{G15/1} et V_{G14/1}, justifier votre réponse.
- Définir le mvt de 13/1, tracer la trajectoire $T_{B13/1}$, en déduire la direction de $V_{B13/1}$ et la tracer.
- Comparer V_{B13/1} et V_{B14/1}, justifier votre réponse.
- Déterminer V_{B13/1} par la cinématique graphique (équiprojectivité ou CIR).
- Comparer V_{B13/1} et V_{B11/1}, justifier votre réponse.
- Définir le mvt de 11/3, tracer la trajectoire T_{B11/3}, en déduire la direction de V_{B11/3} et la tracer.
- Ecrire la relation de composition des vitesses entre VB11/1 et VB11/3
- Déterminer V_{B11/3} et tracer cette vitesse.
- Mesurer le pas de la vis 3, en déduire la vitesse de rotation $\omega_{3/11} = \omega_{3/1} = \omega_{3/28}$

Etude du réducteur :

- Déterminer le rapport de réduction du réducteur.
- En déduire la vitesse de rotation de l'arbre moteur.

4^{ème} PERIODE : choix du moteur

- Calculer le couple moteur nécessaire pour l'essai réel.
- Donner les caractéristiques du moteur :

Tension:

Vitesse de rotation :

Couple utile:

Puissance:

5^{ème} PERIODE : étude intuitive

Par une étude de statique sans calcul, justifier la nécessité de la butée à bille 4.

Ordonnancement des isolements: 15; 14; 11; 3

Quel est l'intérêt du système vis - écrou ?

6^{ème} PERIODE: simulation sous MECA 3D

Vérification des résultats à l'aide de « méca 3d » Ouvrir le fichier SolidWorks : cric électrique 1.sldasm Dans le module méca 3d : Analyse – configurer les paramètres - lancer le calcul puis consulter les résultats.